What Nematode genomes tell us about the importance of horizontal gene transfers in the evolutionary history of animals

 Abstract

Horizontal gene transfer (HGT), the transmission of a gene from one species to another by means other than direct vertical descent from a common ancestor, has been recognized as an important phenomenon in the evolutionary biology of prokaryotes. In eukaryotes, in contrast, the importance of HGT has long been overlooked and its evolutionary significance has been considered to be mostly negligible. However, a series of genome analyses has now shown that HGT not only do probably occur at a higher frequency than originally thought in eukaryotes but recent examples have also shown that they have been subject to natural selection, thus suggesting a significant role in the evolutionary history of the receiver species. Surprisingly, these examples are not from protists in which integration and fixation of foreign genes intuitively appear relatively straightforward, because there is no clear distinction between the germline and the somatic genome. Instead, these examples are from nematodes, multicellular animals that do have distinct cells and tissues and do possess a separate germline. Hence, the mechanisms of gene transfer appears in this case much more complicated. In this commentary, I will further discuss two recent publications that describe HGT in nematodes, one that highlights the importance of HGT in the emergence of plant parasitism and another one that probably represents the most convincing example of a potential transfer between two different metazoan animals, an insect and a nematode.

Full Text Options
Article
Metrics
 Share
 Full Text
 Info
Pages
269 - 292
doi
10.4161/mge.18776
Type
Commentary
 Metrics
 Cite This Article
 Permissions
 Permissions
 Reprints
What Nematode genomes tell us about the importance of horizontal gene transfers in the evolutionary history of animals