The real face of HIF1α in the tumor process

 Abstract

It is well known that the hypoxia-inducible factor 1 α (HIF1α) is detectable as adaptive metabolic response to hypoxia. However, HIF1/HIF1α is detectable even under normoxic conditions, if the metabolism is altered, e.g., high proliferation index. Importantly, both hypoxic metabolism and the Warburg effect have in common a decrease of the intracellular pH value.

In our interpretation, HIF1α is not directly accumulated by hypoxia, but by a process which occurs always under hypoxic conditions, a decrease of the intracellular pH value because of metabolic imbalances. We assume that HIF1α is a sensitive controller of the intracellular pH value independently of the oxygen concentration. Moreover, HIF1α has its major role in activating genes to eliminate toxic metabolic waste products (e.g., NH3/NH4+) generated by the tumor-specific metabolism called glutaminolysis, which occur during hypoxia, or the Warburg effect. For that reason, HIF1α appears as a potential target for tumor therapy to disturb the pH balance and to inhibit the elimination of toxic metabolic waste products in the tumor cells.

Full Text Options
Article
Metrics
 Share
 Full Text
 Info
Pages
3932 - 3936
doi
10.4161/cc.21854
Type
Perspective
 Metrics
 Cite This Article
 Permissions
 Permissions
 Reprints
The real face of HIF1α in the tumor process