Inviability of a DNA2 deletion mutant is due to the DNA damage checkpoint

 Abstract

Dna2 is a dual polarity exo/endonuclease, and 5' to 3' DNA helicase involved in Okazaki Fragment Processing (OFP) and Double-Strand Break (DSB) Repair. In yeast, DNA2 is an essential gene, as expected for a DNA replication protein. Suppression of the lethality of dna2Δ mutants has been found to occur by two mechanisms: overexpression of RAD27scFEN1, encoding a 5' to 3' exo/endo nuclease that processes Okazaki fragments (OFs) for ligation, or deletion of PIF1, a 5' to 3' helicase involved in mitochondrial recombination, telomerase inhibition and OFP. Mapping of a novel, spontaneously arising suppressor of dna2Δ now reveals that mutation of rad9 and double mutation of rad9 mrc1 can also suppress the lethality of dna2Δ mutants. Interaction of dna2Δ and DNA damage checkpoint mutations provides insight as to why dna2Δ is lethal but rad27Δ is not, even though evidence shows that Rad27ScFEN1 processes most of the Okazaki fragments, while Dna2 processes only a subset.

Full Text Options
Article
Metrics
 Share
 Full Text
 Info
Pages
1690 - 1698
doi
10.4161/cc.10.10.15643
Type
Report
 Metrics
 Cite This Article
 Permissions
 Permissions
 Reprints
Inviability of a DNA2 deletion mutant is due to the DNA damage checkpoint