Rapamycins: Mechanisms of Action and Cellular Resistance

 Abstract

Rapamycins are macrocyclic lactones that possess immunosuppressive, antifungal and antitumor properties. The parent compound, rapamycin, is approved as an immunosuppressive agent for preventing rejection in patients receiving organ transplantation. Two analogues, CCI-779 and RAD001 are currently being investigated as anticancer agents. Rapamycins first bind a cyclophilin FKBP12, and this complex binds and inhibits the function of mTOR (mammalian target of rapamycin) a serine/threonine (Ser/Thr) kinase with homology to phosphatidylinositol 3’ kinase. Currently, as mTOR is the only identified target, this places rapamycins in a unique position of being the most selective kinase inhibitor known. Consequently these agents have been powerful tools in elucidating the role of mTOR in cellular growth, proliferation, survival and tumorigenesis. Increasing evidence suggests that mTOR acts as a central controller sensing cellular environment (nutritional status or mitogenic stimulation) and regulating translation initiation through the eukaryotic initiation factor 4E, and ribosomal p70 S6 kinase pathways. Here we review the conserved TOR signaling pathways, conceptual basis for tumor selectivity, and the mechanisms of resistance to this class of antitumor agent.

Full Text Options
Article
Metrics
 Share
 Info
Pages
222 - 232
doi
10.4161/cbt.2.3.360
Type
Review
 Metrics
 Cite This Article
 Permissions
 Permissions
 Reprints
Rapamycins: Mechanisms of Action and Cellular Resistance