Wild-type and mutant p53 proteins interact with mitochondrial caspase-3

 Abstract

Caspases play a key role in the apoptotic pathway by virtue of their ability to cleave key protein substrates within the dying cell. Caspases are produced as inactive zymogens, and need to become proteolytically processed in order to become active. A key executioner caspase, caspase-3, has previously been found to exist in both the cytosol and the mitochondria. At the mitochondria, caspase-3 is associated with both the inner and outer mitochondrial membranes, where it interacts with heat shock proteins Hsp60 and Hsp10. Like caspase-3, a small portion of the p53 tumor suppressor protein is localized to mitochondria, particularly after genotoxic stress. p53 interacts with various members of the Bcl2 family at the mitochondria, and this interaction is key to its ability to induce apoptosis. In this study, we sought to determine the identity of other mitochondrial p53-interacting proteins. Using immunoprecipitation from purified mitochondria followed by mass spectrometry we identified caspase-3 as a mitochondrial p53-interacting protein. Interestingly, we find that tumor-derived mutant forms of p53 retain the ability to interact with mitochondrial caspase-3. Further, we find evidence that these mutant forms of p53 may interfere with the ability of procaspase-3 to become proteolytically activated by caspase-9. The combined data suggest that tumor-derived mutants of p53 may be selected for in tumor cells due to their ability to bind and inhibit the activation of caspase-3.


See commentary: Caspase-3 joins the p53 interactome

Full Text Options
Article
Metrics
 Share
 Full Text
 Info
Pages
740 - 745
doi
10.4161/cbt.11.8.14906
Type
Research Paper
 Metrics
 Cite This Article
 Permissions
 Permissions
 Reprints
Wild-type and mutant p53 proteins interact with mitochondrial caspase-3