ATG Genes Involved in Non-Selective Autophagy are Conserved from Yeast to Man, but the Selective Cvt and Pexophagy Pathways also Require Organism-Specific Genes

 Abstract

ATG genes encode proteins that are required for macroautophagy, the Cvt pathway and/or pexophagy. Using the published Atg protein sequences, we have screened protein and DNA databases to identify putative functional homologs (orthologs) in 21 fungal species (yeast and filamentous fungi) of which the genome sequences were available. For comparison with Atg proteins in higher eukaryotes, also the genomes of Arabidopsis thaliana and Homo sapiens were included. This analysis demonstrated that Atg proteins required for non-selective macroautophagy are conserved from yeast to man, stressing the importance of this process in cell survival and viability. Remarkably, the A. thaliana and human genomes encode multiple proteins highly similar to specific Atg proteins (paralogs), the function of which is unknown. The Atg proteins specifically involved in the Cvt pathway and/or pexophagy showed poor conservation, and were generally not present in A. thaliana and man. Furthermore, the receptor of Cvt cargo, Atg19, was only detected in S. cerevisiae. Nevertheless, Atg11, a protein that links receptor-bound cargo (peroxisomes, Cvt bodies) to the autophagic machinery was identified in all yeast species and filamentous fungi under study. This suggests that in fungi an organism-specific form of selective autophagy may occur, for which specialized Atg proteins have evolved.

Full Text Options
Article
Metrics
 Share
 Info
Pages
106 - 116
Type
Research Paper
 Metrics
 Cite This Article
 Permissions
 Permissions
 Reprints
ATG Genes Involved in Non-Selective Autophagy are Conserved from Yeast to Man, but the Selective Cvt and Pexophagy Pathways also Require Organism-Specific Genes