A quantitative TR-FRET plate reader immunoassay for measuring autophagy


Autophagy involves the isolation and targeting of unwanted cellular components to lysosomes for their digestion and reuse. Autophagic dysregulation has recently been implicated in a wide range of disease processes, yet facile methods for quantifying autophagy have been lacking in the field. Here we describe the generation of a quantitative plate reader assay for measuring the autophagic activity of cells. One of the best characterized autophagy markers is the protein LC3B, which normally resides in the cytosol (LC3B-I) but upon induction of autophagy becomes lipidated and embedded in autophagosomal membranes (LC3B-II). To quantify autophagy, we reasoned that GFP-tagged LC3B could serve as a time-resolved fluorescence resonance energy transfer (TR-FRET) acceptor upon cell lysis in the presence of terbium-labeled LC3B antibodies. Using this TR-FRET immunoassay approach, we screened a panel of LC3B antibodies and identified an antibody that exhibits strong preferential affinity toward autophagosome-associated LC3B-II and thereby facilitates specific detection of autophagic activity. The plate reader format provides both a quantitative and an objective result, thus overcoming some of the key limitations of the traditional immunoblotting and imaging approaches used to monitor autophagy. Moreover, since the assay step requires only a single addition of cell lysis buffer containing the detection antibody its simple workflow is both automation-friendly and scalable, which renders it suitable for high-throughput screening. We demonstrate how this TR-FRET immunoassay for GFP-tagged LC3B-II can be applied to quantitatively detect changes in the autophagy activity of cells, including estimating effects on autophagic flux.

Full Text Options
 Full Text
 Supplemental Material
1227 - 1244
 Cite This Article
Creative Commons License Permissions
A quantitative TR-FRET plate reader immunoassay for measuring autophagy