• The genetic code: Rewritten, revised, repurposed
  • Improved bioactivity of G-rich triplex-forming oligonucleotides containing modified guanine bases
  • Universal strategies for the DNA-encoding of libraries of small molecules using the chemical ligation of oligonucleotide tags
  • Investigation of B-Z transitions with DNA oligonucleotides containing 8-methylguanine

17 Jun 2014

The genetic code: Rewritten, revised, repurposed

Roy D Sleator

Despite remaining apparently frozen through the millennia, the genetic code is far more flexible than previously believed and can be extended and repurposed with relative ease.

Improved bioactivity of G-rich triplex-forming oligonucleotides containing modified guanine bases

Faye A Rogers, Janice A Lloyd and Meetu Kaushik Tiwari

Triplex structures generated by sequence-specific triplex-forming oligonucleotides (TFOs) have proven to be promising tools for gene targeting strategies. In addition, triplex technology has been highly utilized to study the molecular mechanisms of DNA repair, recombination and mutagenesis. However, triplex formation utilizing guanine-rich oligonucleotides as third strands can be inhibited by potassium-induced self-association resulting in G-quadruplex formation. We report here that guanine-rich TFOs partially substituted with 8-aza-7-deaza-guanine (PPG) have improved target site binding in potassium compared with TFOs containing the natural guanine base. We designed PPG-substituted TFOs to bind to a polypurine sequence in the supFG1 reporter gene. The binding efficiency of PPG-substituted TFOs to the target sequence was analyzed using electrophoresis mobility gel shift assays. We have determined that in the presence of potassium, the non-substituted TFO, AG30 did not bind to its target sequence, however binding was observed with the PPG-substituted AG30 under conditions with up to 140 mM KCl. The PPG-TFOs were able to maintain their ability to induce genomic modifications as measured by an assay for gene-targeted mutagenesis. In addition, these compounds were capable of triplex-induced DNA double strand breaks, which resulted in activation of apoptosis.

 Universal strategies for the DNA-encoding of libraries of small molecules using the chemical ligation of oligonucleotide tags

Alexander Litovchick, Matthew A Clark and Anthony D Keefe

The affinity-mediated selection of large libraries of DNA-encoded small molecules is increasingly being used to initiate drug discovery programs. We present universal methods for the encoding of such libraries using the chemical ligation of oligonucleotides. These methods may be used to record the chemical history of individual library members during combinatorial synthesis processes. We demonstrate three different chemical ligation methods as examples of information recording processes (writing) for such libraries and two different cDNA-generation methods as examples of information retrieval processes (reading) from such libraries. The example writing methods include uncatalyzed and Cu(I)-catalyzed alkyne-azide cycloadditions and a novel photochemical thymidine-psoralen cycloaddition. The first reading method “relay primer-dependent bypass” utilizes a relay primer that hybridizes across a chemical ligation junction embedded in a fixed-sequence and is extended at its 3′-terminus prior to ligation to adjacent oligonucleotides. The second reading method “repeat-dependent bypass” utilizes chemical ligation junctions that are flanked by repeated sequences. The upstream repeat is copied prior to a rearrangement event during which the 3′-terminus of the cDNA hybridizes to the downstream repeat and polymerization continues. In principle these reading methods may be used with any ligation chemistry and offer universal strategies for the encoding (writing) and interpretation (reading) of DNA-encoded chemical libraries.

Investigation of B-Z transitions with DNA oligonucleotides containing 8-methylguanine

Frederic Y-H Chen, Soyoung Park, Haruka Otomo, Sohei Sakashita and Hiroshi Sugiyama

Among various Z-form DNA inducers, such as transition metal complexes, polyamines and high ionic concentrations, 8-methylguanine have received attention as efficient chemical modifications. Although it is clear that m8–modified guanine base markedly stabilizes the Z conformation of short oligonucleotides under physiological salt conditions, how sequence composition affects the preference of Z-DNA is still not well established. In this study, various oligomers of d(CG)n or d(GC)n containing either 8-methylguanine in a different position were synthesized and their capacity of stabilizing Z-DNA were evaluated by CD spectra and then compared with each other. It is was found out that the Z-DNA stabilizing effect depend on the order of arrangement of m8G and m8rG in DNA strands and the center position is the most effective to stabilize the Z-DNA and promote the B to Z transition.

Explore Artificial DNA: PNA & XNA

Recent Articles